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Abstract—MicroRNA (miRNA) are small non-coding RNAs
regulating gene expression at the post-transcriptional level. De-
tecting miRNA in a genome is challenging experimentally and
results vary depending on their cellular environment. These lim-
itations inspire the development of knowledge-based prediction
method. This paper proposes a deep learning based classification
model for predicting precursor miRNA sequence that contains
the miRNA sequence. The feature set consists of sequence
features, folding measures, stem-loop features and statistical
features. We evaluate the performance of the proposed method
on human dataset. The deep neural network based classification
outperformed support vector machine, neural network, naive
Bayes classifiers, k-nearest neighbors, random forests as well as
hybrid systems combining SVM and genetic algorithm.

I. INTRODUCTION

MicroRNAs (miRNAs) are single-stranded small noncoding

RNA typically 22 nucleotides long that regulate the translation

of mRNAs. The miRNA regulates gene expression at the post

transcription level by base pairing with the complementary

sequence. This process hinders the translation of mRNA to

proteins. The miRNA biogenesis involves number of steps.

First, primary transcripts of miRNA (pri-miRNA) are tran-

scribed often from introns of protein coding genes that are

several kilobases long. The pri-miRNAs are then clopped by

Rnase-III enzyme Drosha into ∼70 base pairs (bp) long hair-

pin-looped precursor miRNAs (pre-miRNAs). The exportin-

5 protein transports pre-miRNAs hairpin into the cytoplasm

through nuclear pore. In cytoplasm, pre-miRNAs are further

cleaved by Rnase-III enzyme Dicer to produce a ∼20 bp dou-

ble stranded intermediate called miRNA:miRNA*. A strand

of the duplex with the low thermodynamic energy becomes a

mature miRNA. Most mature miRNAs interact with the RNAi

induced silencing complex (RISC) through base pairing of

the target mRNAs regulate the expression of the genes. The

miRNAs play key roles in development, cell proliferation and

cell death. Thus, their deregulation has been connected with

neurodegenerative disease, cancer and metabolic disorders [1].

Currently, miRBase [2] reports over 28645 miRNAs in

more than 200 species, out of which over 2000 miRNA

are reported for human. Informatics analysis predicts that

30% of human genes are regulated by miRNA [3]. miRNAs

can be experimentally determined by directional cloning of

endogenous small RNAs [4]. However, this is a time con-

suming process that require expensive laboratory reagents.

These drawbacks motivate the application of computational

approaches for predicting miRNAs.

Machine learning based methods can identify nonhomolo-

gous and species-specific miRNAs as compared to homolo-

gous search and comparative genomics approaches [2]. Dis-

tinguishing real pre-miRNAs and other pseudo hairpins is a

problem that can be readily expressed as a binary classifi-

cation problem. In this context, the human pre-miRNAs are

labeled as +1 or positive samples whereas; pseudo hairpins

are labeled as -1 or negative samples. The derived features

are learned and mapped to the feature space for classification.

Many approaches have been developed using naive Bayes

classifier (NBC), artificial neural networks (ANN), support

vector machines (SVM), and random forests (RF). SVM has

been widely applied, including triplet-SVM[5], MiRFinder

[6], miPred [7], microPred [8], yasMiR [9], YamiPred [10],

MiRenSVM [11], MiRPara [12], etc. The other classifiers are

neural network based MiRANN[13] classifier, random forest

based [14] classifier.

Deep neural network (DNN) algorithm performs well in

a setting where extracting features from raw data is not

obvious by enabling raw data to be feed in directly. It is also

performs well in a setting where number of features is very

large. Whether the input is a raw data or a high dimensional

feature set, DNN uses multi-layer architecture to learn multiple

level of representation. This architecture automatically extracts

high-level feature necessary for classification. The multiple

layers in deep learning helps in processing of high data

volume and exploit the complexities of data patterns. Hence,

DNN have exhibited a good performance in different machine

learning problems such as protein structure prediction [15],

and predict splicing patterns [16].

In this work, we utilize heterogeneous features including

sequence features, folding measures, stem-loop features and

statistical features (z-score) to differentiate pre-miRNAs from
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pseudo hairpins. The pseudo hairpins are RNA sequences,

which have similar stem-loop features to pre-miRNAs but does

not contain mature miRNAs. We use experimentally validated

pre-miRNAs as positive examples and pseudo hairpins as

negative examples to train and test the proposed method.

The features of pre-miRNA and pseudo hairpins are used as

input to DNN. We compared the performance of proposed

DNN model against existing machine learning classifier and

it achieves higher accuracy.

The main contribution of the paper are summarized as:

• Deep learning based prediction model is proposed for

integrating large number of heterogeneous features for

predictive analysis of pre-miRNAs from pseudo hairpins.

• Modified sampling technique is applied to address class

imbalance problem.

II. METHODS

A. Data

The human pre-miRNA sequence was retrieved from the

miRBase 18.0 release. Similar to miPred [7] approach, the

multiple loops were discarded to get 1600 pre-miRNA as

positive dataset. The obtained sequence had an average length

of 84 nt with minimum 43 nt and maximum 154 nt. The

negative dataset consists of 8494 pseudo hairpins as the false

samples. They were extracted from the human protein-coding

regions as suggested by microPred [8]. The average length of

the sequence is 85 nt with minimum as 63 nt and maximum

as 120 nt. The different filtering criteria, including non-

overlapping sliding window, no multiple loops, lowest base

pair number set to 18, and minimum free energy less than

15kcal/mol were applied on these sequences to resemble the

real pre-miRNA properties.

B. Feature set

The common characteristics of pre-miRNAs used for evalu-

ation consists of sequences composition properties, secondary

structures, folding measures and energy. This work adopts

58 characteristic features, which are shown useful in existing

studies for predicting miRNA. The sequence characteristics

include features related to the frequency of two and three

adjacent nucleotide and aggregate dinucleotide frequency in

the sequence. The secondary structure features from the per-

spectives of miRNA bio-genesis relating different thermody-

namic stability profiles of pre-miRNAs. These structures have

lower free energy and often contain stem and loop regions.

They include diversity, frequency, entropy-related properties,

enthalpy-related properties of the structure. The other features

are hairpin length, loop length, consecutive base-pairs and

ratio of loop length to hairpin length of pre-miRNA secondary

structure. The energy characteristic associated to the energy

of secondary structure includes the minimal free energy of

the secondary structure, overall free energy NEFE, combined

energy features and the energy required for dissolving the

secondary structure.

Fig. 1. A deep learning to predict miRNA with exracted features

C. Deep neural network

The proposed deep neural network (DNN) based miRNA

prediction method, we call DP-miRNA, has three hidden

layers, and the model is denoted as X-100-70-35-1, where

X being the size of the input layer, 1 denotes the number of

neuron in the output layer and the remaining values denotes

the number of neurons in each hidden layer. Figure 1 illustrates

the model architecture and layer-by-layer learning procedure.

Different model architectures were trained using the same

learning procedure but varying the number of hidden layer

and nodes. Amongst the candidate network models, a better

one was selected based on the classifier accuracy. The network

model is pre-trained layer after the layer with the restricted

Boltzmann machine (RBM). The initialization of the weight

between every pair of adjacent layer is a step process that

begins from the input or visible layer and completes at last

hidden layer. At first, RBM learns the structure of the input

data that constitutes to the activation of the first hidden

layer, then the data is moved one layer down the network.

Going in reverse, with each new hidden layer, the input from

the previous layer is approximated by adjusting the network

weights. This back and forth adjustment process is termed as

Gibbs sampling, where the weights are updated by considering

the difference in the correlation of the hidden activations and

visible inputs. The process continues and now the first hidden

layer will act as the input, which is multiplied by weights at the

nodes of second hidden layer and the probability for activating

the second hidden layers is calculated. This process results in

sequential sets of activations by grouping features of features

resulting in a feature hierarchy, by which networks learn more

complex and abstract representations of data. This procedure

of training a RBM can be repeated several times to create

a multi-layer network. At the end, a standard feed-forward

neural network is added after the last hidden layer, so the input

being the activation probabilities which is used to predict the

label. The resulting deep network was put together to adjust

the weights using the standard back propagation algorithm to

minimize the cross-entropy cost function error [17].

The deep learning network are trained with standard back

propagation algorithm, with the weights adjusted using the
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TABLE I
COMPARISON WITH EXISTING COMPUTATIONAL INTELLIGENCE TECHNIQUES

Classification
Method

Accuracy Sensitivity Specificity Geometric Mean

NBC 0.914 ±0.003 0.943 ±0.003 0.796 ±0.012 0.867± 0.006
KNN 0.908± 0.005 0.970± 0.122 0.657±0.023 0.798± 0.009
RF 0.937± 0.004 0.979±0.002 0.765±0.002 0.865±0.008
miRANN 0.917± 0.002 0.963±0.004 0.705±0.006 0.837±0.006
YamiPred 0.932±0.005 0.937±0.008 0.912±0.012 0.924±0.004
DP-miRNA 0.968± 0.002 0.973± 0.005 0.942± 0.006 0.971± 0.004

stochastic gradient descent as [18]]:

wij(t+ 1) = wij(t) + η
∂C

∂wij
(1)

Where, wij(t+1) is the weight computed at t+1, ∂ denotes

the learning rate, and C is the cost function. For the given

model, softmax is used as an activation function and the cost is

computed using cross entropy. The softmax function is defined

as

pj =
exp(xj)∑
k exp(xk)

(2)

Here, pj stands for the output of the unit j, xj and xk denotes

the total input to unit j and k respectively for the same level.

The cross entropy is given by

C = −
∑

i

dj log(pj) (3)

Where dj is the target probability for output unit j and pj
is the probability output after applying the activation function.

Another problem that we have addressed here is the class

imbalance problem in miRNA predictions, as the number of

negative class samples is more compared to the positives. We

address this problem during the training phase by adopting

a modified under sampling approach [19]. In the modified

approach, we divided the majority class into subsets using

k-means algorithm with k=5, and thus obtain clusters with

slightly higher similarity amongst the group. These clusters

are used to form different training sets by varying the ratio of

majority class sample to minority class samples. Amongst the

training dataset, one with higher accuracy was selected as an

input to the classifier.

III. RESULTS

To evaluate the performance of the proposed classifier, we

compare our method to existing state of the art miRNA clas-

sifiers. The evaluation is carried out by dividing the available

data samples into training (60%), validation (20%) and testing

(20%) set. The size of the input vector here is 58, i.e., the

number of features used to build the model. The input data is

normalized to standardizing the inputs in order to improve the

training and to avoid getting stuck in local optima.

A. Performance Evaluation Metrics

The DP-miRNA model is a two class classifier, where true

positive (TP) denotes the number of data samples classified as

positive (real pre-miRNAs) and true negative (TN) represent

correctly classified negative samples (pseudo pre-miRNAs).

Similarly false positive(FP) and false negative (FN) repre-

sents the numbers of the misclassified positive and negative

samples, respectively. The other measuring terms are sensi-

tivity (SE) that measures the proportion of positives that are

correctly identified accounting for the total positive samples,

SE=TP/(TP+FN). Specificity (SP) measures the proportion

of negatives that are correctly identified accounting for the

total negative sample, SP =TN/(TN + FP). The classification

accuracy (Accuracy) is proportion of correctly classified pos-

itive and negative class samples to total number of samples,

Accuracy= (TP + TN)/(TP + TN + FP + FN). Another measure

is geometric mean (Gm) to evaluate global classification

performance, Gm=
√
SE × SP .

B. Performance comparison of DP-miRNA

The DP-miRNA classifier learns more abstract features

from the lower one to better summarize the pre-miRNAs

and pseudo hairpins in the vector space. Table I shows a

comparative result of the proposed DP-miRNA against the

common machine learning approach for miRNA prediction.

Considering the stochastic nature of the algorithm the output

values are averaged for twenty executions. In comparison to

the tested machine leaning techniques, DP-miRNA classifier

shows a better performance. Another, point observed was that

the modified sampling approach helped to overcome class

imbalance problem as compared to random selection of data

during training phase.

Further, we examined the performance of the DP-miRNA

on selected twenty features that mostly represented sequence

information and other thermodynamical characteristics. The

feature set consist of dinucleotide frequencies AG, AU, CU,

GA, UU, MFEI4, MFEI5, Positional Entropy, EAFE, Freq,

dH/L, Tm, Tm/L, L, Avg BP stems, (G-U)/stems, (CE/L),

(A-U)/stems and Statistical Z-scores zG, zQ and zSP. On the

selected feature set we obtained a accuracy of 99.2%, with

sensitivity and specificity high as 99.58% and 98.24% respec-

tively. The result support the fact that features as entropy,

enthalpy, minimum free energy and melting temperature are

crucial for predicting miRNA [10].
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IV. CONCLUSION

In this paper, we proposed deep learning classifier based

pre-miRNA prediction method and showed performance im-

provement over existing methods. The proposed classifier was

evaluated extensively on human dataset. The 58 features used

as the input to deep learning framework included sequence

conservation features, secondary structure features, and energy

features of miRNA. For comparison, the dataset were gen-

erated with four biologically significant groupings and their

combined set.
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